Ansprechpartner

Dr. Holger Pletsch
Leiter einer unabhängigen Nachwuchsgruppe
Telefon:+49 511 762-17171Fax:+49 511 762-2784

Albert-Einstein-Institut Hannover

http://www.aei.mpg.de/

Prof. Dr. Bruce Allen
Direktor
Telefon:+49 511 762-17148Fax:+49 511 762-17182

Albert-Einstein-Institut Hannover

http://www.aei.mpg.de/

Pressekontakt

Dr. Benjamin Knispel
Dr. Benjamin Knispel
Press Officer AEI Hannover
Telefon:+49 511 762-19104Fax:+49 511 762-17182

Max Planck Institute for Gravitational Physics, Hannover

https://www.aei.mpg.de

Animationen

This animation illustrates how analysis of Fermi data reveals new pulsars. Fermi's LAT records the precise time and position of the gamma rays it detects, but to identify a pulsar requires additional information -- its position in the sky, its pulse period, and the way the pulse changes over time. Additionally, even Fermi's sensitive LAT detects few gamma rays from these objects -- as few as one photon per 100,000 rotations. The Hannover team used new methods to execute a so-called blind search, using computers to check many different combinations of position and period against the 8,000 photons Fermi's LAT has collected during its three years in orbit. When photons from the pulses align in time, a new gamma-ray pulsar has been discovered.
© AEI/NASA Goddard Space Flight Center

Die genaue Ursache der bei vielen jungen Pulsaren beobachteten Glitches ist bislang unbekannt. Astronomen ziehen Beben der Neutronensternkruste oder Wechselwirkungen des suprafluiden Sterninneren mit der Kruste als mögliche Erklärungen heran. „Eine große Zahl von vor allem starken Glitches bei Pulsaren zu erfassen, bietet eine Möglichkeit, mehr über den inneren Aufbau dieser kompakten Himmelskörper zu erfahren“, sagt Lucas Guillemot, vom Max-Planck-Institut für Radioastronomie (MPIfR) in Bonn, der Zweitautor der Studie. “Das ist ein schönes Beispiel für die Zusammenarbeit zweier Max-Planck-Institute mit einander ergänzenden Forschungsschwerpunkten“, so Michael Kramer, Direktor am MPIfR und Leiter der Forschungsgruppe „Radioastronomische Fundamentalphysik“.

Nach der Entdeckung in den Daten des Fermi-Satelliten richteten die Forscher das Radioteleskop bei Green Bank im US-amerikanischen West Virginia auf die Himmelsposition des Gammapulsars. In einer fast zweistündigen Beobachtung sowie bei der Analyse einer weiteren einstündigen älteren Beobachtung der Quelle fanden sich keine Anzeichen von Pulsationen im Radiobereich: J1838-0537 ist demnach mit großer Wahrscheinlichkeit ein reiner Gammapulsar.

Auffällige Übereinstimmungen gab es hingegen mit Beobachtungen des High Energy Stereoscopic System (H.E.S.S.) in Namibia, das nach hochenergetischer Gammastrahlung aus den Tiefen des Alls sucht. Astronomen fanden in einer Durchmusterung mit H.E.S.S. nahe dem nun entdeckten Pulsar eine ausgedehnte Quelle solcher Strahlung, konnten deren Natur bisher nicht klären.

Die Entdeckung des Pulsars legt nahe, dass es sich bei der H.E.S.S.-Quelle um einen Pulsarwind-Nebel handelt. Dieser wird von fast lichtschnellen Teilchen erzeugt, die der Pulsar in seinem extrem starken Magnetfeld beschleunigt. Da nun der genaue Ort des Pulsars bekannt ist, kann H.E.S.S. dies zukünftig berücksichtigen und eine höhere Messgenauigkeit als zuvor in dieser Himmelsregion erreichen.

Der ATLAS-Computercluster des Albert-Einstein-Instituts hat damit bereits bei der Entdeckung des zehnten zuvor unbekannten Gammapulsars geholfen, doch Allens Team hat inzwischen weitere Rechenkapazitäten mobilisiert. „Seit August 2011 läuft unsere Suche auch auf dem verteilten Rechenprojekt Einstein@Home, das eine vielfach höhere Rechenkraft als der ATLAS-Cluster hat. Wir sind sehr optimistisch, weitere außergewöhnliche Gammapulsare in den Fermi-Daten aufzuspüren“, sagt Bruce Allen. Ziel der erweiterten Suche ist unter anderem die Entdeckung des ersten reinen Gammapulsars mit einer Rotationsperiode im Millisekundenbereich.

Hintergrundinformationen

Pulsare

Diese kosmischen Leuchtfeuer sind kompakte Neutronensterne, geboren in Supernova-Explosionen, die schnell und gleichmäßig um ihre Achse rotieren. Durch ihr intensives Magnetfeld strahlen sie kegelförmig Radiowellen oder Gammaphotonen ab. Ihre Rotation schwenkt die Kegel wie den Scheinwerfer eines Leuchtturms durchs All. Zielt der Neutronenstern dabei in Richtung Erde, so ist er als Pulsar sichtbar. Nicht immer zeigt er sich gleichzeitig in mehreren Spektralbereichen, in einigen Fällen messen die Wissenschaftler nur das Blinken als Radiopulsar, in anderen lassen sich lediglich die periodischen Ankunftszeiten von Gammaphotonen registrieren. Solche Pulsare werden als „reine“ Gammapulsare bezeichnet. Vermutete Ursache ist die unterschiedliche Lage der Abstrahlungsgebiete im extrem starken Magnetfeld des Neutronensterns.

Das Verhalten der Pulsare gibt weitere Rätsel auf: Ihre gleichmäßige Rotation ist in jungen Jahren noch unruhig und von plötzlichen, ruckartigen Beschleunigungen (englisch: glitches) gestört. Allerdings zeigen nur etwa 5% der Pulsare dieses Verhalten. Bei einem solchen Glitch dreht sich der Neutronenstern unvermittelt schneller, bremst dann langsam wieder ab und kehrt nach einigen Wochen zur alten Rotationsperiode zurück. Warum, ist bislang unbekannt. Doch genaue Messungen dieser ruckartigen Bewegungen eröffnen Einblicke in den Aufbau der kompakten Himmelskörper.

Bisher fanden Astronomen die meisten Pulsare im Radiowellenbereich, doch dank des NASA-Satelliten Fermi spüren sie zunehmend viele dieser Himmelskörper anhand ihrer hochenergetischen Gammastrahlen auf. Fermi beobachtet seit 2008 mit seinem Large Area Telescope (LAT) das Universum im Gammabereich und hat dabei hunderte neuer Quellen entdeckt, von denen viele vermutlich bislang unerkannte Pulsare sind.

 

 
loading content
Zur Redakteursansicht