Dr. Harald Lück
Telefon:+49 511 762-4777Fax:+49 511 762-2784

Albert-Einstein-Institut Hannover

Pressekontakt für Italien

Antonella Varaschin
Ufficio per la Communicazione
Telefon:+39 0668868162

INFN - Istituto Nazionale di Fisica Nucleare

Pressekontakt für Frankreich

Arnaud Marsollier
Telefon:+33 1 44 96 40 35 / +41 76 487 2769

Pressekontakt für die Niederlande

Melissa van der Sande
Telefon:+31 20 592 5075

Pressekontakt für Deutschland und Großbritannien

Susanne Milde
Telefon:+49 331 583 93-55Fax:+49 331 583 93-57

Milde Marketing Wissenschaftskommunikation

Weiterführende Informationen

Max-Planck-Gesellschaft zur Förderung der Wissenschaften (MPG) e.V., acting through Max Planck Institute for Gravitational Physics (Albert Einstein Institute, AEI)
The AEI scientists under the leadership of Prof. Karsten Danzmann and Prof. Bruce Allen, directors of the Albert Einstein Institute, and Dr. Harald Lück who co-chaired the ET design study, are contributing to the following tasks in the ET project:

Work Package 1 (Site identification):
The main objectives of this work package are the definition of the seismic requirements of an experimental site, selection between underground or surface site, definition of the requirements of the infrastructures, conceptual design of the main infrastructures and evaluation of their costs, and a site candidates listing. The AEI contributes to the tasks of site selection and seismic isolation technologies.

Work Package 3 (Topology identification):
The main objectives of work package 3 are the definition of the requirements in terms of quantum noise, identification of the detector topology, selection of the detector geometry. Experience within the AEI with high power lasers, the corresponding high power handling optics, diffractive optics, squeezed light, numerical simulations of various interferometer topologies is being used in all of the tasks of Work Package 3, i.e. the optical design work.

Work Package 4 (Astrophysics issues):
The AEI is developing data analysis techniques for searches for all types of signals. The close connection to the LISA science team will ease investigating complementarities and cooperation possibilities between the 3rd generation observatory and LISA.

The Max Planck Institute for Gravitational Physics (Albert Einstein Institute/AEI) currently comprises five divisions located on two sites, one in Potsdam-Golm and one in Hannover. In its five divisions, the AEI research program covers the entire spectrum of gravitational physics: experimental, observational, and theoretical.

The unique high power lasers used in GEO600 and Virgo and the lasers foreseen for the upgrades of the detectors have been developed by the Laser Zentrum Hannover (LZH) and the AEI. Additionally the AEI is investigating the use of squeezed light and diffractive optics in ground-based gravitational-wave detectors. It is also leading the design of the LISA Pathfinder mission, which paves the way for LISA itself. The AEI has built, commissioned and is running and improving the gravitational wave detector GEO600 together with its colleagues from UK. The GEO project works in close cooperation with the cluster of excellence QUEST (Centre for Quantum Engineering and Space-Time Research) at the Leibniz Universität Hannover.

On the data analysis and astrophysics side, the AEI has developed the core data analysis software and algorithms used to search LSC data for continuous wave signals. Its staff develops and manages the public distributed computing project Einstein@Home, which is the second largest public distributed computing project in the world. Since its inception, the numerical relativity group at the AEI has been at the forefront of all breakthroughs in numerical solutions of Einstein's equations and gravitational wave source modelling. Proximity between the data analysis and numerical relativity groups provides extraordinary synergistic opportunities. The AEI is running a large computer cluster (ATLAS) with thousands of computing nodes dedicated to searching the vast amount of collected data for gravitational waves.

“The ET methodology is ingenious and the technological requirements are jaw-droppingly demanding. We researchers are so excited about this project because with ET we will be able to obtain information about the most distant regions of the universe. We can expect exciting discoveries in the field of gravitational wave astronomy”, says Karsten Danzmann.

loading content
Zur Redakteursansicht