Dr. Harald Lück
Telefon:+49 511 762-4777Fax:+49 511 762-2784

Albert-Einstein-Institut Hannover

Pressekontakt für Italien

Antonella Varaschin
Ufficio per la Communicazione
Telefon:+39 0668868162

INFN - Istituto Nazionale di Fisica Nucleare

Pressekontakt für Frankreich

Arnaud Marsollier
Telefon:+33 1 44 96 40 35 / +41 76 487 2769

Pressekontakt für die Niederlande

Melissa van der Sande
Telefon:+31 20 592 5075

Pressekontakt für Deutschland und Großbritannien

Susanne Milde
Telefon:+49 331 583 93-55Fax:+49 331 583 93-57

Milde Marketing Wissenschaftskommunikation

Weiterführende Informationen

German and UK participants in ET

New technologies at the limits of the laws of nature
Germany and the UK have a broad and vigorous programme of gravitational wave research and contributed substantially to the ET conceptual design study. The German Max Planck Institute for Gravitational Physics (Albert Einstein Institute/AEI) and the UK Universities of Birmingham, Cardiff and Glasgow cooperate since many years in the GEO Collaboration and worked within the ET study on several work packages outlining ET’s scientific targets, the detector layout and technology, as well as the timescale and estimated costs. Further below you will find more information and comments from the leading German and UK scientists.

Germany and the United Kingdom have been involved in gravitational wave research from its very beginning: Researchers from the University of Glasgow and the Max Planck Society have been working on the concept of a laser interferometric gravitational wave detector since the 1970s. In the 1980s colleagues from Cardiff University and a few years later from the University of Birmingham joined and in 1994 the project received funding to build the GEO600 detector near Hanover, Germany. The successful design strategy for GEO600 was to build a low-cost, high-technology detector with a sensitivity comparable to the much longer US LIGO and French-Italian-Dutch Virgo detectors. GEO600 took its first test data in 2002 and has been working as part of the global network, searching for gravitational wave signals pioneering new technologies.

Today GEO600 and the GEO project has firmly established itself as an international think tank for experimental gravitational wave research. The GEO project with its members from Germany and UK is a full partner in the US Advanced LIGO project with a central role in data analysis and the instrumental upgrade (supported by a capital investment from PPARC/STFC and MPG). The German-UK gravitational wave community also plays a major role in the space-based projects LISA Pathfinder and LISA (Laser Interferometer Space Antenna).

The close collaboration of German and UK scientists with colleagues from other European countries is one of the critical factors for success of the ET design study. This grouping of gravitational wave research scientists working together is opening the road for further collaboration towards a third generation gravitational wave observatory on the European level.

Cardiff University: School of Physics and Astronomy
Scientists of the School of Physics and Astronomy at Cardiff University coordinated the ET Work Package 4 “Astrophysics issues”. The group, led by Professor B.S. Sathyaprakash, coordinated with the entire Science Team and evaluated inputs on the science potential, prioritized the list of scientific benefits and gauged the scope of alternative proposals for different configurations of the detector.

Prof. Sathyprakash summarizes the results as follows: “Einstein Telescope will truly revolutionize our understanding of the Universe by impacting fundamental physics, cosmology and astrophysics. ET will be an astronomical observatory to unveil the secret and hidden lives of neutron stars and black holes – the most compact objects in the Universe.
ET will observe gravitational radiation arising from their collisions in binary systems when the Universe was still in its infancy, assembling the first galaxies and the large scale structure. ET will detect their formation when mature stars collapse and explode in violent supernovae and hypernovae. It will be sensitive to quakes in neutron stars and ripples on black holes caused by a colliding star or a black hole, providing us new insights into complex physical processes.”

The Gravitational Physics Group at Cardiff University works on the ultimate goal in gravitational wave research: the detection of gravitational waves in the data from the international gravitational wave detector network. The group's effort is predominantly spent in searching for what is believed to be the most promising class of astronomical sources, namely the coalescence of binary neutron stars and black holes. The group also researches into the theoretical aspects of gravitational waves sources, specializing in the production of a stochastic background of gravitational waves in the primordial Universe and modelling the late time dynamics of binary black holes.

loading content
Zur Redakteursansicht